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Abstract: Synthetic distearate phosphatidylinositol (PI) was not phosphorylated by PI 3-
kinase. The fatty acids at glycerol sn-2 must be as short as octanoic acid or less to act as a
substrate of PI 3-kinase. © 1999 Elsevier Science Ltd. All rights reserved.
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Phosphatidylinositol 3-kinase (PI 3-kinase) is a key enzyme in the signaling pathways of 3-phosphorylated
polyphosphoinositides.' In vitro, PI 3-kinase phosphorylates phosphatidylinositol (PI), phosphatidylinositol 4-
phosphate (PI 4-P), and phosphatidylinositol 4,5-bisphosphate (P 4, 5-P;). The major substrate ir vivo is assumed
to be P14, 5-P;, generating phosphatidylinositol 3,4,5-trisphosphate (PI 3, 4, 5-P3), a putative second messenger
which plays pivotal roles in activating GTP-GDP exchanging factor for Rac or ARF1, serine-threonine kinases
such as PDK1, nPKCs, and Tec family tyrosine kinases.? PI 3, 4, 5-P; is dephosphorylated by specific PIP; 5-
phosphatases to give phosphatidylinositol 3,4-bisphosphate (PI 3, 4-P,).! Though several reports describe the
importance of the fatty acids in the diacylglycerols (DAG) substructure, systematic analysis focusing on their
enzymatic reactions has not been carried out by other groups.?

The natural PI purified from bovine liver, which mainly contains arachidonate at the sn-2 position, is an
excellent substrate of PI 3-kinase (Figure 1). On the other hand, we unexpectedly have found that synthetic
distearate PI, synthetically hydrogenated natural PI and PI 4, 5-P, were not phosphorylated by PI 3-kinase.** The
sn-2 side chain of DAG might play a critical role in the enzymatic reaction. In attempts to develop phosphatidyl-
inositol analogs as biochemical probes and/or synthetic second messenger molecules, the saturated DAG substructure
should provide a feasible basis for molecular design.*® In the previous article, we reported the dephosphorylation
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of synthetic PI 3. 4, 5-P; with varied sn-2 side chains by PIP; 5-phosphatases.” Here, we describe the optimization

of the sn-2 fatty acids of PI by evaluating the phosphorylation reaction with PI 3-kinase.

First. a standard fatty acids mixture (Pluwe) Of Plcy, Plcg, Ples, Plcio, Pleia, Pleys and Pleys at the sn-2 center

was synthesized from an equimolar mixture of seven carboxylic acids (C4, C6, C8, C10,C12, C14, C16). Respective

PI with varied fatty acids was also synthesized independently (Scheme 1). The above standard PI mixture was

subjected to the enzymatic reaction with PI 3-kinase.®® Negative ion fast atom bombardment (FAB) mass

spectrometric analysis'® "' of the crude enzymatic reaction mixture using a matrix (triethanolamine:glycerol = 3:1)

showed the apparent ion peaks of monophosphorylated Plc,, Plcs and Plcs analogs (Figure 2). The phosphorylated

ions derived from the longer chain analogs such as Plcis were detected only at trace levels.
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Second, we found that short sn-2 fatty acid analogs such as Plcs and Plcs are excellent substrates of PI 3-
kinase by means of independent phosphorylation experiments with synthetic Plcs, Plcs, Plcs, Plciz, Pleis and Plcig
(Figure 3).”2 It is intriguing that the phosphorylation of both Plc, and sn-2-epimer of Plc, by PI 3-kinase proceeded
without any distinction (data not shown).

Third, the reactivity of Pl; and Plcs was directly compared with natural PI by competitive phosphorylation
as follows. A 1: 1 mixture of both PIs was subjected to phosphorylation by PI 3-kinase in the same reaction
vessel. Micelles containing Plcs and natural PI were prepared using phosphatidylserine (PS) as a carrier. After PI
3-kinase reaction with [y-*P] ATP, the resulting products were analyzed by TLC. As the mobility of PIcs 3-P was
smaller than that of native PI 3-P, the radioactivity of respective PI 3-P was quantitated using imaging analyzer
(Figure 4). The relative amounts of 3-[*2P]-phosphorylated Plcs and natural PI (Pics 3-P/ natural PI 3-P) were
determined to be 1.17 / 1 (kinase reaction: 5 min), 2.52 / 2.64 (15 min), and 4.02 / 4.54 (60 min).
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Phosphorylation of native and synthetic PI under competitive conditions

The structural requirement for saturated PI to act as a substrate of PI 3-kinase is thus as follows: the fatty
acids at glycerol sn-2 must be as short as octanoic acid or less, and the absolute configuration of the glycerol
moiety is not crucial. Considering the folding and free rotation of arachidonate side chains, the spherical size of
the whole DAG substructure is more important than the number of methylene units of the sn-2 fatty acid.”® The
present results open a new window on the design of phosphatidylinositols with saturated sn-2 fatty acids, which
are apparently more stable than natural ones, and may have a wide range of applications in creating artificial
second messenger molecules, enzyme inhibitors, affinity probes to find specific binding proteins and photoaffinity
labeling probes.®
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